Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Deep Learning-based 3-lead ECG Classification with Heartbeat Counting and Demographic Data Integration (2208.07088v1)

Published 15 Aug 2022 in cs.CV

Abstract: Nowadays, an increasing number of people are being diagnosed with cardiovascular diseases (CVDs), the leading cause of death globally. The gold standard for identifying these heart problems is via electrocardiogram (ECG). The standard 12-lead ECG is widely used in clinical practice and the majority of current research. However, using a lower number of leads can make ECG more pervasive as it can be integrated with portable or wearable devices. This article introduces two novel techniques to improve the performance of the current deep learning system for 3-lead ECG classification, making it comparable with models that are trained using standard 12-lead ECG. Specifically, we propose a multi-task learning scheme in the form of the number of heartbeats regression and an effective mechanism to integrate patient demographic data into the system. With these two advancements, we got classification performance in terms of F1 scores of 0.9796 and 0.8140 on two large-scale ECG datasets, i.e., Chapman and CPSC-2018, respectively, which surpassed current state-of-the-art ECG classification methods, even those trained on 12-lead data. To encourage further development, our source code is publicly available at https://github.com/lhkhiem28/LightX3ECG.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Khiem H. Le (5 papers)
  2. Hieu H. Pham (35 papers)
  3. Thao B. T. Nguyen (1 paper)
  4. Tu A. Nguyen (2 papers)
  5. Cuong D. Do (7 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.