Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SketchSampler: Sketch-based 3D Reconstruction via View-dependent Depth Sampling (2208.06880v2)

Published 14 Aug 2022 in cs.CV

Abstract: Reconstructing a 3D shape based on a single sketch image is challenging due to the large domain gap between a sparse, irregular sketch and a regular, dense 3D shape. Existing works try to employ the global feature extracted from sketch to directly predict the 3D coordinates, but they usually suffer from losing fine details that are not faithful to the input sketch. Through analyzing the 3D-to-2D projection process, we notice that the density map that characterizes the distribution of 2D point clouds (i.e., the probability of points projected at each location of the projection plane) can be used as a proxy to facilitate the reconstruction process. To this end, we first translate a sketch via an image translation network to a more informative 2D representation that can be used to generate a density map. Next, a 3D point cloud is reconstructed via a two-stage probabilistic sampling process: first recovering the 2D points (i.e., the x and y coordinates) by sampling the density map; and then predicting the depth (i.e., the z coordinate) by sampling the depth values at the ray determined by each 2D point. Extensive experiments are conducted, and both quantitative and qualitative results show that our proposed approach significantly outperforms other baseline methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Chenjian Gao (7 papers)
  2. Qian Yu (116 papers)
  3. Lu Sheng (63 papers)
  4. Yi-Zhe Song (120 papers)
  5. Dong Xu (167 papers)
Citations (18)

Summary

We haven't generated a summary for this paper yet.