Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

May the force be with you (2208.06676v1)

Published 13 Aug 2022 in cs.LG

Abstract: Modern methods in dimensionality reduction are dominated by nonlinear attraction-repulsion force-based methods (this includes t-SNE, UMAP, ForceAtlas2, LargeVis, and many more). The purpose of this paper is to demonstrate that all such methods, by design, come with an additional feature that is being automatically computed along the way, namely the vector field associated with these forces. We show how this vector field gives additional high-quality information and propose a general refinement strategy based on ideas from Morse theory. The efficiency of these ideas is illustrated specifically using t-SNE on synthetic and real-life data sets.

Summary

We haven't generated a summary for this paper yet.