Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contrastive Learning for Object Detection (2208.06412v1)

Published 12 Aug 2022 in cs.CV

Abstract: Contrastive learning is commonly used as a method of self-supervised learning with the "anchor" and "positive" being two random augmentations of a given input image, and the "negative" is the set of all other images. However, the requirement of large batch sizes and memory banks has made it difficult and slow to train. This has motivated the rise of Supervised Contrasative approaches that overcome these problems by using annotated data. We look to further improve supervised contrastive learning by ranking classes based on their similarity, and observe the impact of human bias (in the form of ranking) on the learned representations. We feel this is an important question to address, as learning good feature embeddings has been a long sought after problem in computer vision.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Rishab Balasubramanian (7 papers)
  2. Kunal Rathore (2 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.