Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low Emission Building Control with Zero-Shot Reinforcement Learning (2208.06385v2)

Published 12 Aug 2022 in cs.LG, cs.SY, and eess.SY

Abstract: Heating and cooling systems in buildings account for 31\% of global energy use, much of which are regulated by Rule Based Controllers (RBCs) that neither maximise energy efficiency nor minimise emissions by interacting optimally with the grid. Control via Reinforcement Learning (RL) has been shown to significantly improve building energy efficiency, but existing solutions require access to building-specific simulators or data that cannot be expected for every building in the world. In response, we show it is possible to obtain emission-reducing policies without such knowledge a priori--a paradigm we call zero-shot building control. We combine ideas from system identification and model-based RL to create PEARL (Probabilistic Emission-Abating Reinforcement Learning) and show that a short period of active exploration is all that is required to build a performant model. In experiments across three varied building energy simulations, we show PEARL outperforms an existing RBC once, and popular RL baselines in all cases, reducing building emissions by as much as 31\% whilst maintaining thermal comfort. Our source code is available online via https://enjeeneer.io/projects/pearl .

Citations (4)

Summary

We haven't generated a summary for this paper yet.