Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Locality-aware Attention Network with Discriminative Dynamics Learning for Weakly Supervised Anomaly Detection (2208.05636v1)

Published 11 Aug 2022 in cs.CV

Abstract: Video anomaly detection is recently formulated as a multiple instance learning task under weak supervision, in which each video is treated as a bag of snippets to be determined whether contains anomalies. Previous efforts mainly focus on the discrimination of the snippet itself without modeling the temporal dynamics, which refers to the variation of adjacent snippets. Therefore, we propose a Discriminative Dynamics Learning (DDL) method with two objective functions, i.e., dynamics ranking loss and dynamics alignment loss. The former aims to enlarge the score dynamics gap between positive and negative bags while the latter performs temporal alignment of the feature dynamics and score dynamics within the bag. Moreover, a Locality-aware Attention Network (LA-Net) is constructed to capture global correlations and re-calibrate the location preference across snippets, followed by a multilayer perceptron with causal convolution to obtain anomaly scores. Experimental results show that our method achieves significant improvements on two challenging benchmarks, i.e., UCF-Crime and XD-Violence.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yujiang Pu (3 papers)
  2. Xiaoyu Wu (43 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.