Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exact low-dimensional description for fast neural oscillations with low firing rates (2208.05515v4)

Published 10 Aug 2022 in q-bio.NC and nlin.AO

Abstract: Recently, low-dimensional models of neuronal activity have been exactly derived for large networks of deterministic, Quadratic Integrate-and-Fire (QIF) neurons. Such firing rate models (FRM) describe the emergence of fast collective oscillations (>30~Hz) via the frequency-locking of a subset of neurons to the global oscillation frequency. However, the suitability of such models to describe realistic neuronal states is seriously challenged by fact that during episodes of fast collective oscillations, neuronal discharges are often very irregular and have low firing rates compared to the global oscillation frequency. Here we extend the theory to derive exact FRM for QIF neurons to include noise, and show that networks of stochastic neurons displaying irregular discharges at low firing rates during episodes of fast oscillations, are governed by exactly the same evolution equations as deterministic networks. Our results reconcile two traditionally confronted views on neuronal synchronization, and upgrade the applicability of exact FRM to describe a broad range of biologically realistic neuronal states.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. Marlene Bartos, Imre Vida,  and Peter Jonas, “Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks,” Nature Reviews Neuroscience 8, 45–56 (2007).
  2. Miles A. Whittington, Roger D. Traub,  and John G. R. Jefferys, “Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation,” Nature 373, 612–615 (1995).
  3. M.A Whittington, R.D Traub, N Kopell, B Ermentrout,  and E.H Buhl, “Inhibition-based rhythms: experimental and mathematical observations on network dynamics,” International Journal of Psychophysiology 38, 315–336 (2000).
  4. Xiao-Jing Wang, “Neurophysiological and computational principles of cortical rhythms in cognition,” Physiological Reviews 90, 1195–1268 (2010).
  5. György Buzsáki and Xiao-Jing Wang, “Mechanisms of gamma oscillations,” Annual Review of Neuroscience 35, 203–225 (2012).
  6. Nicolas Brunel and Vincent Hakim, “Sparsely synchronized neuronal oscillations,” Chaos: An Interdisciplinary Journal of Nonlinear Science 18, 015113 (2008).
  7. Christoph Börgers, An introduction to modeling neuronal dynamics, Vol. 66 (Springer, 2017).
  8. Nicolas Brunel and Vincent Hakim, “Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with Low Firing Rates,” Neural Computation 11, 1621–1671 (1999).
  9. Nicolas Brunel, “Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons,” Journal of Computational Neuroscience 8, 183–208 (2000).
  10. P H E Tiesinga and Jorge V José, “Robust gamma oscillations in networks of inhibitory hippocampal interneurons,” Network: Computation in Neural Systems 11, 1–23 (2000).
  11. Nicolas Brunel and David Hansel, “How Noise Affects the Synchronization Properties of Recurrent Networks of Inhibitory Neurons,” Neural Computation 18, 1066–1110 (2006).
  12. H. R. Wilson and J. D. Cowan, “Excitatory and inhibitory interactions in localized populations of model neurons,” Biophysical journal 12, 1–24 (1972).
  13. F. H. Lopes da Silva, A. Hoeks, H. Smits,  and L. H. Zetterberg, “Model of brain rhythmic activity,” Kybernetik 15, 27–37 (1974).
  14. S. M. Ahn and Walter J. Freeman, “Steady-state and limit cycle activity of mass of neurons forming simple feedback loops (i): lumped circuit model,” Kybernetik 16, 87–91 (1974).
  15. Walter J. Freeman, Mass Action in the Nervous System (Elsevier, 1975).
  16. A. Roxin, N. Brunel,  and D. Hansel, “Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks,” Phys. Rev. Lett. 94, 238103 (2005).
  17. A. Roxin and E. Montbrió, “How effective delays shape oscillatory dynamics in neuronal networks,” Physica D 240, 323–345 (2011).
  18. Federico Devalle, Alex Roxin,  and Ernest Montbrió, “Firing rate equations require a spike synchrony mechanism to correctly describe fast oscillations in inhibitory networks,” PLoS Computational Biology 13, 1–21 (2017).
  19. Federico Devalle, Ernest Montbrió,  and Diego Pazó, “Dynamics of a large system of spiking neurons with synaptic delay,” Phys. Rev. E 98, 042214 (2018).
  20. Nicolas Brunel and Xiao-Jing Wang, “What determines the frequency of fast network oscillations with irregular neural discharges? i. synaptic dynamics and excitation-inhibition balance,” Journal of Neurophysiology 90, 415–430 (2003), pMID: 12611969.
  21. E. Montbrió, D. Pazó,  and A. Roxin, “Macroscopic description for networks of spiking neurons,” Phys. Rev. X 5, 021028 (2015).
  22. Tanushree B. Luke, Ernest Barreto,  and Paul So, “Complete Classification of the Macroscopic Behavior of a Heterogeneous Network of Theta Neurons,” Neural Computation 25, 3207–3234 (2013).
  23. Stephen Coombes and Áine Byrne, “Next generation neural mass models,” in Nonlinear dynamics in computational neuroscience (Springer, 2019) pp. 1–16.
  24. Xiao-Jing Wang and György Buzsáki, ‘‘Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model,” Journal of Neuroscience 16, 6402–6413 (1996).
  25. John A White, Carson C Chow, Jason Rit, Cristina Soto-Treviño,  and Nancy Kopell, “Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons,” Journal of computational neuroscience 5, 5–16 (1998).
  26. Carlo R. Laing, “Exact neural fields incorporating gap junctions,” SIAM Journal on Applied Dynamical Systems 14, 1899–1929 (2015).
  27. Diego Pazó and Ernest Montbrió, “From quasiperiodic partial synchronization to collective chaos in populations of inhibitory neurons with delay,” Phys. Rev. Lett. 116, 238101 (2016).
  28. Irmantas Ratas and Kestutis Pyragas, “Macroscopic oscillations of a quadratic integrate-and-fire neuron network with global distributed-delay coupling,” Phys. Rev. E 98, 052224 (2018).
  29. Hongjie Bi, Marco Segneri, Matteo di Volo,  and Alessandro Torcini, “Coexistence of fast and slow gamma oscillations in one population of inhibitory spiking neurons,” Phys. Rev. Research 2, 013042 (2020).
  30. Marco Segneri, Hongjie Bi, Simona Olmi,  and Alessandro Torcini, “Theta-nested gamma oscillations in next generation neural mass models,” Frontiers in Computational Neuroscience 14, 47 (2020).
  31. Andrea Ceni, Simona Olmi, Alessandro Torcini,  and David Angulo-Garcia, “Cross frequency coupling in next generation inhibitory neural mass models,” Chaos: An Interdisciplinary Journal of Nonlinear Science 30, 053121 (2020).
  32. Stephen Keeley, Áine Byrne, André Fenton,  and John Rinzel, “Firing rate models for gamma oscillations,” Journal of Neurophysiology 121, 2181–2190 (2019).
  33. Viktoras Pyragas and Kestutis Pyragas, “Mean-field equations for neural populations with q𝑞qitalic_q-gaussian heterogeneities,” Phys. Rev. E 105, 044402 (2022).
  34. Pau Clusella, Elif Köksal-Ersöz, Jordi Garcia-Ojalvo,  and Giulio Ruffini, “Comparison between an exact and a heuristic neural mass model with second-order synapses,” Biological Cybernetics  (2022), 10.1007/s00422-022-00952-7.
  35. Viktoras Pyragas and Kestutis Pyragas, “Effect of Cauchy noise on a network of quadratic integrate-and-fire neurons with non-Cauchy heterogeneities,” Physics Letters A 480, 128972 (2023).
  36. Takuma Tanaka, “Low-dimensional dynamics of phase oscillators driven by cauchy noise,” Phys. Rev. E 102, 042220 (2020).
  37. Ralf Tönjes and Arkady Pikovsky, “Low-dimensional description for ensembles of identical phase oscillators subject to cauchy noise,” Phys. Rev. E 102, 052315 (2020).
  38. B. Ermentrout and N. Kopell, “Parabolic bursting in an excitable system coupled with a slow oscillation,” SIAM J. Appl. Math. 46, 233–253 (1986).
  39. E. M. Izhikevich, Dynamical Systems in Neuroscience (The MIT Press, Cambridge, Massachusetts, 2007).
  40. See Ref. Pietras et al. (2023) for an alternative derivation. Additionally, see also recent attempts to obtain approximated mean field descriptions of populations of QIF neurons with independent Gaussian noise  Goldobin et al. (2021); Ratas and Pyragas (2019); Goldobin (2021); di Volo et al. (2022).
  41. Ralf Metzler and Joseph Klafter, “The random walk’s guide to anomalous diffusion: A fractional dynamics approach,” Physics Reports 339, 1–77 (2000).
  42. J. Klafter and I. M. Sokolov, First Steps in Random Walks: From Tools to Applications (Oxford University Press, 2011).
  43. Eusebius J Doedel, Alan R Champneys, Fabio Dercole, Thomas F Fairgrieve, Yu A Kuznetsov, B Oldeman, RC Paffenroth, B Sandstede, XJ Wang,  and CH Zhang, “Auto-07p: Continuation and bifurcation software for ordinary differential equations,”   (2007).
  44. There exist no exact low-dimensional reductions for populations of QIF neurons with Gaussian disorder, and the approximated techniques proposed so far rely on weak noise assumptions Goldobin et al. (2021); Ratas and Pyragas (2019); Goldobin (2021); di Volo et al. (2022).
  45. Ernest Montbrió and Diego Pazó, “Exact mean-field theory explains the dual role of electrical synapses in collective synchronization,” Phys. Rev. Lett. 125, 248101 (2020).
  46. S. I. Denisov, Werner Horsthemke,  and Peter Hänggi, “Steady-state Lévy flights in a confined domain,” Physical Review E 77, 061112 (2008).
  47. Denis S. Goldobin, Matteo di Volo,  and Alessandro Torcini, “Reduction methodology for fluctuation driven population dynamics,” Phys. Rev. Lett. 127, 038301 (2021).
  48. Irmantas Ratas and Kestutis Pyragas, “Noise-induced macroscopic oscillations in a network of synaptically coupled quadratic integrate-and-fire neurons,” Phys. Rev. E 100, 052211 (2019).
  49. Denis S. Goldobin, “Mean-field models of populations of quadratic integrate-and-fire neurons with noise on the basis of the circular cumulant approach,” Chaos: An Interdisciplinary Journal of Nonlinear Science 31, 083112 (2021).
  50. Matteo di Volo, Marco Segneri, Denis S. Goldobin, Antonio Politi,  and Alessandro Torcini, “Coherent oscillations in balanced neural networks driven by endogenous fluctuations,” Chaos: An Interdisciplinary Journal of Nonlinear Science 32, 023120 (2022).
  51. Bastian Pietras, Rok Cestnik,  and Arkady Pikovsky, “Exact finite-dimensional description for networks of globally coupled spiking neurons,” Phys. Rev. E 107, 024315 (2023).
Citations (8)

Summary

We haven't generated a summary for this paper yet.