Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a question of Davenport and diagonal cubic forms over $\mathbb{F}_q(t)$ (2208.05422v1)

Published 10 Aug 2022 in math.NT

Abstract: Given a non-singular diagonal cubic hypersurface $X\subset\mathbb{P}{n-1}$ over $\mathbb{F}_q(t)$ with $\mathrm{char} (\mathbb{F}_q)\neq 3$, we show that the number of rational points of height at most $|P|$ is $O(|P|{3+\varepsilon})$ for $n=6$ and $O(\lvert P \rvert{2+\varepsilon})$ for $n=4$. In fact, if $n=4$ and $\mathrm{char}(\mathbb{F}_q) >3$ we prove that the number of rational points away from any rational line contained in $X$ is bounded by $O(|P|{3/2+\varepsilon})$. From the result in $6$ variables we deduce weak approximation for diagonal cubic hypersurfaces for $n\geq 7$ over $\mathbb{F}_q(t)$ when $\mathrm{char}(\mathbb{F}_q)>3$ and handle Waring's problem for cubes in $7$ variables over $\mathbb{F}_q(t)$ when $\mathrm{char}(\mathbb{F}_q)\neq 3$. Our results answer a question of Davenport regarding the number of solutions of bounded height to $x_13+x_23+x_33 = x_43+x_53+x_63$ with $x_i \in \mathbb{F}_q[t]$.

Summary

We haven't generated a summary for this paper yet.