Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CANet: Channel Extending and Axial Attention Catching Network for Multi-structure Kidney Segmentation (2208.05241v2)

Published 10 Aug 2022 in eess.IV and cs.CV

Abstract: Renal cancer is one of the most prevalent cancers worldwide. Clinical signs of kidney cancer include hematuria and low back discomfort, which are quite distressing to the patient. Some surgery-based renal cancer treatments like laparoscopic partial nephrectomy relys on the 3D kidney parsing on computed tomography angiography (CTA) images. Many automatic segmentation techniques have been put forward to make multi-structure segmentation of the kidneys more accurate. The 3D visual model of kidney anatomy will help clinicians plan operations accurately before surgery. However, due to the diversity of the internal structure of the kidney and the low grey level of the edge. It is still challenging to separate the different parts of the kidney in a clear and accurate way. In this paper, we propose a channel extending and axial attention catching Network(CANet) for multi-structure kidney segmentation. Our solution is founded based on the thriving nn-UNet architecture. Firstly, by extending the channel size, we propose a larger network, which can provide a broader perspective, facilitating the extraction of complex structural information. Secondly, we include an axial attention catching(AAC) module in the decoder, which can obtain detailed information for refining the edges. We evaluate our CANet on the KiPA2022 dataset, achieving the dice scores of 95.8%, 89.1%, 87.5% and 84.9% for kidney, tumor, artery and vein, respectively, which helps us get fourth place in the challenge.

Citations (1)

Summary

We haven't generated a summary for this paper yet.