Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-Supervised Junction Tree Variational Autoencoder for Molecular Property Prediction (2208.05119v5)

Published 10 Aug 2022 in cs.LG and physics.chem-ph

Abstract: Molecular Representation Learning is essential to solving many drug discovery and computational chemistry problems. It is a challenging problem due to the complex structure of molecules and the vast chemical space. Graph representations of molecules are more expressive than traditional representations, such as molecular fingerprints. Therefore, they can improve the performance of machine learning models. We propose SeMole, a method that augments the Junction Tree Variational Autoencoders, a state-of-the-art generative model for molecular graphs, with semi-supervised learning. SeMole aims to improve the accuracy of molecular property prediction when having limited labeled data by exploiting unlabeled data. We enforce that the model generates molecular graphs conditioned on target properties by incorporating the property into the latent representation. We propose an additional pre-training phase to improve the training process for our semi-supervised generative model. We perform an experimental evaluation on the ZINC dataset using three different molecular properties and demonstrate the benefits of semi-supervision.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Atia Hamidizadeh (4 papers)
  2. Tony Shen (5 papers)
  3. Martin Ester (29 papers)