Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Behavior of the distance exponent for $\frac{1}{|x-y|^{2d}}$ long-range percolation (2208.04793v2)

Published 9 Aug 2022 in math.PR

Abstract: We study independent long-range percolation on $\mathbb{Z}d$ where the vertices $u$ and $v$ are connected with probability 1 for $|u-v|\infty=1$ and with probability $1-e{-\beta \int{u+\left[0,1\right)d} \int_{u+\left[0,1\right)d} \frac{1}{|x-y|{2d}} d x d y } \approx \frac{\beta}{|u-v|{2d}}$ for $|u-v|_\infty\geq 2$, where $\beta \geq 0$ is a parameter. There exists an exponent $\theta=\theta(\beta) \in \left(0,1\right]$ such that the graph distance between the origin $\mathbf{0}$ and $v \in \mathbb{Z}d$ scales like $|v|{\theta}$. We prove that this exponent $\theta(\beta)$ is continuous and strictly decreasing as a function in $\beta$. Furthermore, we show that $\theta(\beta)=1-\beta+o(\beta)$ for small $\beta$ in dimension $d=1$.

Summary

We haven't generated a summary for this paper yet.