Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How Well Do Vision Transformers (VTs) Transfer To The Non-Natural Image Domain? An Empirical Study Involving Art Classification (2208.04693v1)

Published 9 Aug 2022 in cs.CV

Abstract: Vision Transformers (VTs) are becoming a valuable alternative to Convolutional Neural Networks (CNNs) when it comes to problems involving high-dimensional and spatially organized inputs such as images. However, their Transfer Learning (TL) properties are not yet well studied, and it is not fully known whether these neural architectures can transfer across different domains as well as CNNs. In this paper we study whether VTs that are pre-trained on the popular ImageNet dataset learn representations that are transferable to the non-natural image domain. To do so we consider three well-studied art classification problems and use them as a surrogate for studying the TL potential of four popular VTs. Their performance is extensively compared against that of four common CNNs across several TL experiments. Our results show that VTs exhibit strong generalization properties and that these networks are more powerful feature extractors than CNNs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Vincent Tonkes (1 paper)
  2. Matthia Sabatelli (21 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.