Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On exact computation of Tukey depth central regions (2208.04587v2)

Published 9 Aug 2022 in stat.CO

Abstract: The Tukey (or halfspace) depth extends nonparametric methods toward multivariate data. The multivariate analogues of the quantiles are the central regions of the Tukey depth, defined as sets of points in the $d$-dimensional space whose Tukey depth exceeds given thresholds $k$. We address the problem of fast and exact computation of those central regions. First, we analyse an efficient Algorithm A from Liu et al. (2019), and prove that it yields exact results in dimension $d=2$, or for a low threshold $k$ in arbitrary dimension. We provide examples where Algorithm A fails to recover the exact Tukey depth region for $d>2$, and propose a modification that is guaranteed to be exact. We express the problem of computing the exact central region in its dual formulation, and use that viewpoint to demonstrate that further substantial improvements to our algorithm are unlikely. An efficient C++ implementation of our exact algorithm is freely available in the R package TukeyRegion.

Citations (1)

Summary

We haven't generated a summary for this paper yet.