Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Energy-Aware Federated Learning on Battery-Powered Clients (2208.04505v2)

Published 9 Aug 2022 in cs.LG and cs.DC

Abstract: Federated learning (FL) is a newly emerged branch of AI that facilitates edge devices to collaboratively train a global machine learning model without centralizing data and with privacy by default. However, despite the remarkable advancement, this paradigm comes with various challenges. Specifically, in large-scale deployments, client heterogeneity is the norm which impacts training quality such as accuracy, fairness, and time. Moreover, energy consumption across these battery-constrained devices is largely unexplored and a limitation for wide-adoption of FL. To address this issue, we develop EAFL, an energy-aware FL selection method that considers energy consumption to maximize the participation of heterogeneous target devices. EAFL is a power-aware training algorithm that cherry-picks clients with higher battery levels in conjunction with its ability to maximize the system efficiency. Our design jointly minimizes the time-to-accuracy and maximizes the remaining on-device battery levels. EAFLimproves the testing model accuracy by up to 85\% and decreases the drop-out of clients by up to 2.45$\times$.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Amna Arouj (1 paper)
  2. Ahmed M. Abdelmoniem (27 papers)
Citations (26)