Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extensions of derivations and symmetric operators (2208.03981v1)

Published 8 Aug 2022 in math.NA and cs.NA

Abstract: Given a densely defined skew-symmetric operators A 0 on a real or complex Hilbert space V , we parametrize all m-dissipative extensions in terms of contractions $\Phi$ : H-$\rightarrow$ H + , where Hand H + are Hilbert spaces associated with a boundary quadruple. Such an extension generates a unitary C 0-group if and only if $\Phi$ is a unitary operator. As corollary we obtain the parametrization of all selfadjoint extensions of a symmetric operator by unitary operators from Hto H +. Our results extend the theory of boundary triples initiated by von Neumann and developed by V. I. and M. L. Gorbachuk, J. Behrndt and M. Langer, S. A. Wegner and many others, in the sense that a boundary quadruple always exists (even if the defect indices are different in the symmetric case).

Citations (1)

Summary

We haven't generated a summary for this paper yet.