Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Study of Encoder-Decoder Architectures for Code-Mix Search Query Translation (2208.03713v1)

Published 7 Aug 2022 in cs.CL

Abstract: With the broad reach of the internet and smartphones, e-commerce platforms have an increasingly diversified user base. Since native language users are not conversant in English, their preferred browsing mode is their regional language or a combination of their regional language and English. From our recent study on the query data, we noticed that many of the queries we receive are code-mix, specifically Hinglish i.e. queries with one or more Hindi words written in English (Latin) script. We propose a transformer-based approach for code-mix query translation to enable users to search with these queries. We demonstrate the effectiveness of pre-trained encoder-decoder models trained on a large corpus of the unlabeled English text for this task. Using generic domain translation models, we created a pseudo-labelled dataset for training the model on the search queries and verified the effectiveness of various data augmentation techniques. Further, to reduce the latency of the model, we use knowledge distillation and weight quantization. Effectiveness of the proposed method has been validated through experimental evaluations and A/B testing. The model is currently live on Flipkart app and website, serving millions of queries.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Mandar Kulkarni (13 papers)
  2. Soumya Chennabasavaraj (2 papers)
  3. Nikesh Garera (13 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.