Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Watson-Crick conjugates of words and languages (2208.03123v2)

Published 5 Aug 2022 in cs.FL and math.CO

Abstract: This paper explores the concept of Watson-Crick conjugates, also known as $\theta$-conjugates, of words and languages. This concept extends the classical idea of conjugates by incorporating the Watson-Crick complementarity of DNA sequences, from the perspective of DNA computing. Our investigation initially focuses on the properties of $\theta$-conjugates of words. We then define $\theta$-conjugates of a language and study closure properties of certain families of languages under the $\theta$-conjugate operation. Furthermore, we analyze the iterated $\theta$-conjugate of both words and languages. Finally, we delve into the idea of $\theta$-conjugate-free languages and examine the decidability problems surrounding $\theta$-conjugate-freeness for different classes of languages

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. L. M. Adleman. Molecular computation of solutions to combinatorial problems. science, 266(5187):1021–1024, 1994.
  2. Solution of the knapsack problem by deoxyribonucleic acid computing. Japanese journal of applied physics, 37(10R):5839 – 5841, 1998.
  3. Introducing two low-latency cipher families: Sonic and supersonic. Cryptology ePrint Archive, 2023.
  4. Initiator-catalyzed self-assembly of duplex-looped DNA hairpin motif based on strand displacement reaction for logic operations and amplified biosensing. Biosensors and Bioelectronics, 83:281–286, 2016.
  5. Solution of a 20-variable 3-SAT problem on a DNA computer. Science, 296(5567):499–502, 2002.
  6. A. Brandstädt. Closure properties of certain families of formal languages with respect to a generalization of cyclic closure. RAIRO. Informatique théorique, 15(3):233–252, 1981.
  7. Pseudo-power avoidance. In Developments in Language Theory, volume 6224 of Lecture Notes in Computer Science, pages 432–433. Springer, 2010.
  8. On a special class of primitive words. Theoretical Computer Science, 411(3):617–630, 2010.
  9. Undecidability and finite automata. In Developments in Language Theory, volume 10396 of Lecture Notes in Computer Science, pages 160–172. Springer, 2017.
  10. Testing generalised freeness of words. In 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014), volume 25 of Leibniz International Proceedings in Informatics (LIPIcs), pages 337–349, 2014.
  11. Computing with DNA by operating on plasmids. Biosystems, 57(2):87–93, 2000.
  12. DNA computing of solutions to knapsack problems. Biosystems, 88(1-2):156–162, 2007.
  13. Protein output for DNA computing. Natural Computing, 4:1–10, 2005.
  14. I. Jeddi and L. Saiz. Three-dimensional modeling of single stranded DNA hairpins for aptamer-based biosensors. Scientific reports, 7(1):1178, 2017.
  15. G. Jirásková and A. Okhotin. State complexity of cyclic shift. RAIRO-Theoretical Informatics and Applications, 42(2):335–360, 2008.
  16. C. R. Johnson. Automating the DNA computer: solving n-variable 3-SAT problems. Natural Computing, 7:239–253, 2008.
  17. L. Kari and M. S. Kulkarni. Generating the pseudo-powers of a word. Journal of Automata, Languages and Combinatorics, 19(1-4):157–171, 2014.
  18. L. Kari and M. S. Kulkarni. Pseudo-identities and bordered words. In Discrete Mathematics and Computer Science, pages 207–222. Editura Academiei Române, Romania, 2014.
  19. L. Kari and M. S. Kulkarni. Disjunctivity and other properties of sets of pseudo-bordered words. Acta Informatica, 54(4):379–398, 2017.
  20. L. Kari and K. Mahalingam. Involutively bordered words. International Journal of Foundations of Computer Science, 18(05):1089–1106, 2007.
  21. L. Kari and K. Mahalingam. Watson-crick bordered words and their syntactic monoid. International Journal of Foundations of Computer Science, 19(05):1163–1179, 2008.
  22. L. Kari and K. Mahalingam. Watson-Crick conjugate and commutative words. In DNA Computing, volume 4848 of Lecture Notes in Computer Science, pages 273–283. Springer, 2008.
  23. L. Kari and K. Mahalingam. Watson-Crick palindromes in DNA computing. Natural Computing, 9(2):297–316, 2010.
  24. L. Kari and T. Ng. State complexity of pseudocatenation. In Language and Automata Theory and Applications, volume 11417 of Lecture Notes in Computer Science, pages 203–214. Springer, 2019.
  25. L. Kari and S. Seki. On pseudoknot-bordered words and their properties. Journal of Computer and System Sciences, 75(2):113–121, 2009.
  26. P. Linz. An introduction to formal languages and automata (5th edition). Jones & Bartlett Learning, 2012.
  27. M. Lothaire. Combinatorics on words. Cambridge University Press, 1997.
  28. The equation aM=bN⁢cPsuperscript𝑎𝑀superscript𝑏𝑁superscript𝑐𝑃a^{M}=b^{N}c^{P}italic_a start_POSTSUPERSCRIPT italic_M end_POSTSUPERSCRIPT = italic_b start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_c start_POSTSUPERSCRIPT italic_P end_POSTSUPERSCRIPT in a free group. Michigan Mathematical Journal, 9:289–298, 1962.
  29. Counting (Watson-Crick) palindromes in Watson-Crick conjugates. Information and Computation, 285:104863, 2022.
  30. T. Oshiba. Closure property of the family of context-free languages under the cyclic shift operation. Electronics & communications in Japan, 55(4):119–122, 1972.
  31. DNA solution of the maximal clique problem. Science, 278(5337):446–449, 1997.
  32. E. L. Post. A variant of a recursively unsolvable problem. Bulletin of the American Mathematical Society, 52(4):264–268, 1946.
  33. G. Rozenberg and A. Salomaa(Eds.). Handbook of Formal Languages, volume 1. Springer, 1997.
  34. Molecular computation by DNA hairpin formation. Science, 288(5469):1223–1226, 2000.
  35. J. Shallit. A second course in formal languages and automata theory. Cambridge University Press, 2008.
  36. Recent advances on the encoding and selection methods of DNA-encoded chemical library. Bioorganic & medicinal chemistry letters, 27(3):361–369, 2017.
  37. Š. Starosta. On theta-palindromic richness. Theoretical Computer Science, 412(12-14):1111–1121, 2011.
  38. Consistent testing for recurrent genomic aberrations. Biometrika, 102(4):783–796, 2015.
  39. Solving the SAT problem using a DNA computing algorithm based on ligase chain reaction. Biosystems, 91(1):117–125, 2008.
  40. D. Y. Zhang and G. Seelig. Dynamic DNA nanotechnology using strand-displacement reactions. Nature chemistry, 3(2):103–113, 2011.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com