Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Noise-Robust Loss for Unlabeled Entity Problem in Named Entity Recognition (2208.02934v1)

Published 5 Aug 2022 in cs.CL and cs.AI

Abstract: Named Entity Recognition (NER) is an important task in natural language processing. However, traditional supervised NER requires large-scale annotated datasets. Distantly supervision is proposed to alleviate the massive demand for datasets, but datasets constructed in this way are extremely noisy and have a serious unlabeled entity problem. The cross entropy (CE) loss function is highly sensitive to unlabeled data, leading to severe performance degradation. As an alternative, we propose a new loss function called NRCES to cope with this problem. A sigmoid term is used to mitigate the negative impact of noise. In addition, we balance the convergence and noise tolerance of the model according to samples and the training process. Experiments on synthetic and real-world datasets demonstrate that our approach shows strong robustness in the case of severe unlabeled entity problem, achieving new state-of-the-art on real-world datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Wentao Kang (1 paper)
  2. Guijun Zhang (6 papers)
  3. Xiao Fu (92 papers)

Summary

We haven't generated a summary for this paper yet.