Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Fuzzy-Logic based Map-Matching Method with Trajectory Stay-Point Detection (2208.02881v1)

Published 4 Aug 2022 in cs.LG, cs.AI, cs.CG, cs.CV, and cs.LO

Abstract: The requirement to trace and process moving objects in the contemporary era gradually increases since numerous applications quickly demand precise moving object locations. The Map-matching method is employed as a preprocessing technique, which matches a moving object point on a corresponding road. However, most of the GPS trajectory datasets include stay-points irregularity, which makes map-matching algorithms mismatch trajectories to irrelevant streets. Therefore, determining the stay-point region in GPS trajectory datasets results in better accurate matching and more rapid approaches. In this work, we cluster stay-points in a trajectory dataset with DBSCAN and eliminate redundant data to improve the efficiency of the map-matching algorithm by lowering processing time. We reckoned our proposed method's performance and exactness with a ground truth dataset compared to a fuzzy-logic based map-matching algorithm. Fortunately, our approach yields 27.39% data size reduction and 8.9% processing time reduction with the same accurate results as the previous fuzzy-logic based map-matching approach.

Citations (3)

Summary

We haven't generated a summary for this paper yet.