Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modelling multivariate extreme value distributions via Markov trees (2208.02627v2)

Published 29 Jul 2022 in stat.ME, math.ST, and stat.TH

Abstract: Multivariate extreme value distributions are a common choice for modelling multivariate extremes. In high dimensions, however, the construction of flexible and parsimonious models is challenging. We propose to combine bivariate max-stable distributions into a Markov random field with respect to a tree. Although in general not max-stable itself, this Markov tree is attracted by a multivariate max-stable distribution. The latter serves as a tree-based approximation to an unknown max-stable distribution with the given bivariate distributions as margins. Given data, we learn an appropriate tree structure by Prim's algorithm with estimated pairwise upper tail dependence coefficients as edge weights. The distributions of pairs of connected variables can be fitted in various ways. The resulting tree-structured max-stable distribution allows for inference on rare event probabilities, as illustrated on river discharge data from the upper Danube basin.

Citations (8)

Summary

We haven't generated a summary for this paper yet.