Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

InitialGAN: A Language GAN with Completely Random Initialization (2208.02531v3)

Published 4 Aug 2022 in cs.CL

Abstract: Text generative models trained via Maximum Likelihood Estimation (MLE) suffer from the notorious exposure bias problem, and Generative Adversarial Networks (GANs) are shown to have potential to tackle this problem. Existing language GANs adopt estimators like REINFORCE or continuous relaxations to model word probabilities. The inherent limitations of such estimators lead current models to rely on pre-training techniques (MLE pre-training or pre-trained embeddings). Representation modeling methods which are free from those limitations, however, are seldomly explored because of their poor performance in previous attempts. Our analyses reveal that invalid sampling methods and unhealthy gradients are the main contributors to such unsatisfactory performance. In this work, we present two techniques to tackle these problems: dropout sampling and fully normalized LSTM. Based on these two techniques, we propose InitialGAN whose parameters are randomly initialized in full. Besides, we introduce a new evaluation metric, Least Coverage Rate, to better evaluate the quality of generated samples. The experimental results demonstrate that InitialGAN outperforms both MLE and other compared models. To the best of our knowledge, it is the first time a language GAN can outperform MLE without using any pre-training techniques.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Da Ren (2 papers)
  2. Qing Li (430 papers)
Citations (2)