Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CFARnet: deep learning for target detection with constant false alarm rate (2208.02474v3)

Published 4 Aug 2022 in cs.LG and cs.CV

Abstract: We consider the problem of target detection with a constant false alarm rate (CFAR). This constraint is crucial in many practical applications and is a standard requirement in classical composite hypothesis testing. In settings where classical approaches are computationally expensive or where only data samples are given, machine learning methodologies are advantageous. CFAR is less understood in these settings. To close this gap, we introduce a framework of CFAR constrained detectors. Theoretically, we prove that a CFAR constrained Bayes optimal detector is asymptotically equivalent to the classical generalized likelihood ratio test (GLRT). Practically, we develop a deep learning framework for fitting neural networks that approximate it. Experiments of target detection in different setting demonstrate that the proposed CFARnet allows a flexible tradeoff between CFAR and accuracy.

Citations (4)

Summary

We haven't generated a summary for this paper yet.