Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Multivariate Time Series Anomalies with Zero Known Label (2208.02108v3)

Published 3 Aug 2022 in cs.LG and cs.AI

Abstract: Multivariate time series anomaly detection has been extensively studied under the semi-supervised setting, where a training dataset with all normal instances is required. However, preparing such a dataset is very laborious since each single data instance should be fully guaranteed to be normal. It is, therefore, desired to explore multivariate time series anomaly detection methods based on the dataset without any label knowledge. In this paper, we propose MTGFlow, an unsupervised anomaly detection approach for multivariate time series anomaly detection via dynamic graph and entity-aware normalizing flow, leaning only on a widely accepted hypothesis that abnormal instances exhibit sparse densities than the normal. However, the complex interdependencies among entities and the diverse inherent characteristics of each entity pose significant challenges on the density estimation, let alone to detect anomalies based on the estimated possibility distribution. To tackle these problems, we propose to learn the mutual and dynamic relations among entities via a graph structure learning model, which helps to model accurate distribution of multivariate time series. Moreover, taking account of distinct characteristics of the individual entities, an entity-aware normalizing flow is developed to describe each entity into a parameterized normal distribution, thereby producing fine-grained density estimation. Incorporating these two strategies, MTGFlow achieves superior anomaly detection performance. Experiments on five public datasets with seven baselines are conducted, MTGFlow outperforms the SOTA methods by up to 5.0 AUROC\%. Codes will be released at https://github.com/zqhang/Detecting-Multivariate-Time-Series-Anomalies-with-Zero-Known-Label.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Qihang Zhou (9 papers)
  2. Jiming Chen (105 papers)
  3. Haoyu Liu (49 papers)
  4. Shibo He (44 papers)
  5. Wenchao Meng (10 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.