Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Harnack inequality for solutions of the $p(x)$-Laplace equation under the precise non-logarithmic Zhikov's conditions (2208.01970v1)

Published 3 Aug 2022 in math.AP

Abstract: We prove continuity and Harnack's inequality for bounded solutions to the equation $$ {\rm div}\big(|\nabla u|{p(x)-2}\,\nabla u \big)=0, \quad p(x)= p + L\frac{\log\log\frac{1}{|x-x_{0}|}}{\log\frac{1}{|x-x_{0}|}},\quad L > 0, $$ under the precise non-logarithmic condition on the function $p(x)$.

Summary

We haven't generated a summary for this paper yet.