Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Velocity estimation via model order reduction (2208.01209v1)

Published 2 Aug 2022 in math.NA and cs.NA

Abstract: A novel approach to full waveform inversion (FWI), based on a data driven reduced order model (ROM) of the wave equation operator is introduced. The unknown medium is probed with pulses and the time domain pressure waveform data is recorded on an active array of sensors. The ROM, a projection of the wave equation operator is constructed from the data via a nonlinear process and is used for efficient velocity estimation. While the conventional FWI via nonlinear least-squares data fitting is challenging without low frequency information, and prone to getting stuck in local minima (cycle skipping), minimization of ROM misfit is behaved much better, even for a poor initial guess. For low-dimensional parametrizations of the unknown velocity the ROM misfit function is close to convex. The proposed approach consistently outperforms conventional FWI in standard synthetic tests.

Citations (1)

Summary

We haven't generated a summary for this paper yet.