Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Approximate Generalization of the Okamura-Seymour Theorem (2208.00795v3)

Published 1 Aug 2022 in cs.DM and cs.DS

Abstract: We consider the problem of multicommodity flows in planar graphs. Okamura and Seymour showed that if all the demands are incident on one face, then the cut-condition is sufficient for routing demands. We consider the following generalization of this setting and prove an approximate max flow-min cut theorem: for every demand edge, there exists a face containing both its end points. We show that the cut-condition is sufficient for routing $\Omega(1)$-fraction of all the demands. To prove this, we give a $L_1$-embedding of the planar metric which approximately preserves distance between all pair of points on the same face.

Citations (4)

Summary

We haven't generated a summary for this paper yet.