Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Assouad-like dimensions of a class of random Moran measures II -- non-homogeneous Moran sets (2207.14654v1)

Published 29 Jul 2022 in math.CA and math.PR

Abstract: In this paper, we determine the almost sure values of the $\Phi$-dimensions of random measures $\mu$ supported on random Moran sets in $\Rd$ that satisfy a uniform separation condition. This paper generalizes earlier work done on random measures on homogeneous Moran sets \cite{HM} to the case of unequal scaling factors. The $\Phi$-dimensions are intermediate Assouad-like dimensions with the (quasi-)Assouad dimensions and the $\theta$-Assouad spectrum being special cases. The almost sure value of $\dim_\Phi \mu$ exhibits a threshold phenomena, with one value for large'' $\Phi$ (with the quasi-Assouad dimension as an example of alarge'' dimension) and another for small'' $\Phi$ (with the Assouad dimension as an example of asmall'' dimension). We give many applications, including where the scaling factors are fixed and the probabilities are uniformly distributed. The almost sure $\Phi$ dimension of the underlying random set is also a consequence of our results.

Summary

We haven't generated a summary for this paper yet.