Triangles in r-wise t-intersecting families (2207.14548v1)
Abstract: Let $t$, $r$, $k$ and $n$ be positive integers and $\mathcal{F}$ a family of $k$-subsets of an $n$-set $V$. The family $ \CF $ is $ r $-wise $ t $-intersecting if for any $ F_1, \ldots, F_r \in \CF $, we have $ \abs{\cap_{i = 1}{r}F_i}\gs t $. An $ r $-wise $ t $-intersecting family of $ r + 1 $ sets $ {T_1, \ldots, T_{r + 1}} $ is called an $ (r + 1,t) $-triangle if $ |T_1 \cap \cdots \cap T_{r + 1}| \ls t - 1 $. In this paper, we prove that if $ n \gs n_0(r, t, k) $, then the $ r $-wise $ t $-intersecting family $ \CF \subseteq \binom{[n]}{k} $ containing the most $ (r + 1,t) $-triangles is isomorphic to $ \curlybraces{F \in \binom{[n]}{k}: \abs{F \cap [r + t]} \gs r + t - 1} $. This can also be regarded as a generalized Tur\'{a}n type result.