Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pre-training General Trajectory Embeddings with Maximum Multi-view Entropy Coding (2207.14539v2)

Published 29 Jul 2022 in cs.CV and cs.LG

Abstract: Spatio-temporal trajectories provide valuable information about movement and travel behavior, enabling various downstream tasks that in turn power real-world applications. Learning trajectory embeddings can improve task performance but may incur high computational costs and face limited training data availability. Pre-training learns generic embeddings by means of specially constructed pretext tasks that enable learning from unlabeled data. Existing pre-training methods face (i) difficulties in learning general embeddings due to biases towards certain downstream tasks incurred by the pretext tasks, (ii) limitations in capturing both travel semantics and spatio-temporal correlations, and (iii) the complexity of long, irregularly sampled trajectories. To tackle these challenges, we propose Maximum Multi-view Trajectory Entropy Coding (MMTEC) for learning general and comprehensive trajectory embeddings. We introduce a pretext task that reduces biases in pre-trained trajectory embeddings, yielding embeddings that are useful for a wide variety of downstream tasks. We also propose an attention-based discrete encoder and a NeuralCDE-based continuous encoder that extract and represent travel behavior and continuous spatio-temporal correlations from trajectories in embeddings, respectively. Extensive experiments on two real-world datasets and three downstream tasks offer insight into the design properties of our proposal and indicate that it is capable of outperforming existing trajectory embedding methods.

Citations (17)

Summary

We haven't generated a summary for this paper yet.