Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supplementing Recurrent Neural Network Wave Functions with Symmetry and Annealing to Improve Accuracy (2207.14314v2)

Published 28 Jul 2022 in cond-mat.dis-nn, cond-mat.str-el, cs.LG, and physics.comp-ph

Abstract: Recurrent neural networks (RNNs) are a class of neural networks that have emerged from the paradigm of artificial intelligence and has enabled lots of interesting advances in the field of natural language processing. Interestingly, these architectures were shown to be powerful ansatze to approximate the ground state of quantum systems. Here, we build over the results of [Phys. Rev. Research 2, 023358 (2020)] and construct a more powerful RNN wave function ansatz in two dimensions. We use symmetry and annealing to obtain accurate estimates of ground state energies of the two-dimensional (2D) Heisenberg model, on the square lattice and on the triangular lattice. We show that our method is superior to Density Matrix Renormalisation Group (DMRG) for system sizes larger than or equal to $14 \times 14$ on the triangular lattice.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. Recurrent neural network wave functions. Physical Review Research, 2(2), Jun 2020. ISSN 2643-1564. doi: 10.1103/physrevresearch.2.023358. URL http://dx.doi.org/10.1103/PhysRevResearch.2.023358.
  2. Neural network solution of the Schrödinger equation for a two-dimensional harmonic oscillator. Chemical Physics, 173(3):377–383, 1993. ISSN 0301-0104. doi: 10.1016/0301-0104(93)80153-Z.
  3. Artificial neural network methods in quantum mechanics. Computer Physics Communications, 104(1):1 – 14, 1997. ISSN 0010-4655. doi: https://doi.org/10.1016/S0010-4655(97)00054-4. URL http://www.sciencedirect.com/science/article/pii/S0010465597000544.
  4. Machine learning phases of matter. Nature Physics, 14:431–434, 2017. doi: https://doi.org/10.1038/nphys4035.
  5. Solving the quantum many-body problem with artificial neural networks. Science, 355(6325):602–606, Feb 2017. ISSN 1095-9203. doi: 10.1126/science.aag2302. URL http://dx.doi.org/10.1126/science.aag2302.
  6. Neural-network quantum state tomography. Nature Physics, 14:447–450, 2018. doi: https://doi.org/10.1038/s41567-018-0048-5.
  7. Reconstructing quantum states with generative models. Nature Machine Intelligence, 1(3):155–161, Mar 2019. ISSN 2522-5839. doi: 10.1038/s42256-019-0028-1. URL http://dx.doi.org/10.1038/s42256-019-0028-1.
  8. Zi Cai and Jinguo Liu. Approximating quantum many-body wave functions using artificial neural networks. Phys. Rev. B, 97:035116, Jan 2018. doi: 10.1103/PhysRevB.97.035116. URL https://link.aps.org/doi/10.1103/PhysRevB.97.035116.
  9. Di Luo and Bryan K. Clark. Backflow transformations via neural networks for quantum many-body wave functions. Phys. Rev. Lett., 122:226401, Jun 2019. doi: 10.1103/PhysRevLett.122.226401. URL https://link.aps.org/doi/10.1103/PhysRevLett.122.226401.
  10. Ab initio solution of the many-electron schrödinger equation with deep neural networks. Physical Review Research, 2(3), Sep 2020. ISSN 2643-1564. doi: 10.1103/physrevresearch.2.033429. URL http://dx.doi.org/10.1103/PhysRevResearch.2.033429.
  11. Deep-neural-network solution of the electronic schrödinger equation. Nature Chemistry, 12(10):891–897, Sep 2020. ISSN 1755-4349. doi: 10.1038/s41557-020-0544-y. URL http://dx.doi.org/10.1038/s41557-020-0544-y.
  12. Fermionic neural-network states for ab-initio electronic structure. Nature Communications, 11:2368, 2020. doi: https://doi.org/10.1038/s41467-020-15724-9.
  13. Deep autoregressive models for the efficient variational simulation of many-body quantum systems. Physical Review Letters, 124(2), Jan 2020. ISSN 1079-7114. doi: 10.1103/physrevlett.124.020503. URL http://dx.doi.org/10.1103/PhysRevLett.124.020503.
  14. Christopher Roth. Iterative retraining of quantum spin models using recurrent neural networks, 2020.
  15. Computational complexity and fundamental limitations to fermionic quantum monte carlo simulations. Physical Review Letters, 94(17), May 2005. ISSN 1079-7114. doi: 10.1103/physrevlett.94.170201. URL http://dx.doi.org/10.1103/PhysRevLett.94.170201.
  16. Generalization properties of neural network approximations to frustrated magnet ground states. Nature Communications, 11(1):1593, March 2020. ISSN 2041-1723. doi: 10.1038/s41467-020-15402-w.
  17. Long short-term memory. Neural Comput., 9(8):1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.
  18. Alex Graves. Supervised sequence labelling. In Supervised sequence labelling with recurrent neural networks, pages 5–13. Springer, 2012. URL https://www.cs.toronto.edu/~graves/preprint.pdf.
  19. A critical review of recurrent neural networks for sequence learning, 2015.
  20. Dynamical large deviations of two-dimensional kinetically constrained models using a neural-network state ansatz, 2020.
  21. Steven R. White. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett., 69:2863–2866, Nov 1992. doi: 10.1103/PhysRevLett.69.2863. URL https://link.aps.org/doi/10.1103/PhysRevLett.69.2863.
  22. U. Schollwöck. The density-matrix renormalization group. Reviews of Modern Physics, 77(1):259–315, Apr 2005. ISSN 1539-0756. doi: 10.1103/revmodphys.77.259. URL http://dx.doi.org/10.1103/RevModPhys.77.259.
  23. S. Bengio and Y. Bengio. Taking on the curse of dimensionality in joint distributions using neural networks. IEEE Transactions on Neural Networks, 11(3):550–557, May 2000. ISSN 1045-9227. doi: 10.1109/72.846725.
  24. Variational neural annealing. Nature Machine Intelligence, October 2021. ISSN 2522-5839. doi: 10.1038/s42256-021-00401-3. URL https://doi.org/10.1038/s42256-021-00401-3.
  25. Yusuke Nomura. Helping restricted boltzmann machines with quantum-state representation by restoring symmetry. Journal of Physics: Condensed Matter, 33(17):174003, Apr 2021. ISSN 1361-648X. doi: 10.1088/1361-648x/abe268. URL http://dx.doi.org/10.1088/1361-648X/abe268.
  26. Learning the ground state of a non-stoquastic quantum hamiltonian in a rugged neural network landscape. SciPost Physics, 10(6), Jun 2021. ISSN 2542-4653. doi: 10.21468/scipostphys.10.6.147. URL http://dx.doi.org/10.21468/SciPostPhys.10.6.147.
  27. Ordering energy levels of interacting spin systems. Journal of Mathematical Physics, 3(4):749–751, 1962. doi: 10.1063/1.1724276.
  28. W Marshall. Antiferromagnetism. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 232(1188):48–68, oct 1955. ISSN 2053-9169. doi: 10.1098/rspa.1955.0200. URL http://www.royalsocietypublishing.org/doi/10.1098/rspa.1955.0200.
  29. Luca Capriotti. Quantum effects and broken symmetries in frustrated antiferromagnets. International Journal of Modern Physics B, 15(12):1799–1842, May 2001. ISSN 1793-6578. doi: 10.1142/s0217979201004605. URL http://dx.doi.org/10.1142/S0217979201004605.
  30. Gradient optimization of finite projected entangled pair states. Physical Review B, 95(19), May 2017. ISSN 2469-9969. doi: 10.1103/physrevb.95.195154. URL http://dx.doi.org/10.1103/PhysRevB.95.195154.
  31. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available from tensorflow.org.
  32. Array programming with numpy. Nature, 585(7825):357–362, Sep 2020. ISSN 1476-4687. doi: 10.1038/s41586-020-2649-2. URL https://doi.org/10.1038/s41586-020-2649-2.
  33. Minimal gated unit for recurrent neural networks, 2016.
  34. Huitao Shen. Mutual information scaling and expressive power of sequence models, 2019.
  35. Claudius Gros. Criterion for a good variational wave function. Phys. Rev. B, 42:6835–6838, Oct 1990. doi: 10.1103/PhysRevB.42.6835. URL https://link.aps.org/doi/10.1103/PhysRevB.42.6835.
  36. Zero-variance zero-bias principle for observables in quantum monte carlo: Application to forces. The Journal of Chemical Physics, 119(20):10536–10552, 2003. doi: 10.1063/1.1621615. URL https://doi.org/10.1063/1.1621615.
  37. F. Becca and S. Sorella. Quantum Monte Carlo Approaches for Correlated Systems. Cambridge University Press, 2017. doi: 10.1017/9781316417041.
  38. Adam: A method for stochastic optimization, 2017.
  39. The ITensor software library for tensor network calculations, 2020.
Citations (16)

Summary

We haven't generated a summary for this paper yet.