Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

WiVelo: Fine-grained Walking Velocity Estimation for Wi-Fi Passive Tracking (2207.14072v1)

Published 28 Jul 2022 in cs.HC and eess.SP

Abstract: Passive human tracking via Wi-Fi has been researched broadly in the past decade. Besides straight-forward anchor point localization, velocity is another vital sign adopted by the existing approaches to infer user trajectory. However, state-of-the-art Wi-Fi velocity estimation relies on Doppler-Frequency-Shift (DFS) which suffers from the inevitable signal noise incurring unbounded velocity errors, further degrading the tracking accuracy. In this paper, we present WiVelo\footnote{Code&datasets are available at \textit{https://github.com/liecn/WiVelo\_SECON22}} that explores new spatial-temporal signal correlation features observed from different antennas to achieve accurate velocity estimation. First, we use subcarrier shift distribution (SSD) extracted from channel state information (CSI) to define two correlation features for direction and speed estimation, separately. Then, we design a mesh model calculated by the antennas' locations to enable a fine-grained velocity estimation with bounded direction error. Finally, with the continuously estimated velocity, we develop an end-to-end trajectory recovery algorithm to mitigate velocity outliers with the property of walking velocity continuity. We implement WiVelo on commodity Wi-Fi hardware and extensively evaluate its tracking accuracy in various environments. The experimental results show our median and 90\% tracking errors are 0.47~m and 1.06~m, which are half and a quarter of state-of-the-arts.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Chenning Li (8 papers)
  2. Li Liu (311 papers)
  3. Zhichao Cao (10 papers)
  4. Mi Zhang (85 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.