Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive meshfree approximation for linear elliptic partial differential equations with PDE-greedy kernel methods (2207.13971v2)

Published 28 Jul 2022 in math.NA and cs.NA

Abstract: We consider the meshless approximation for solutions of boundary value problems (BVPs) of elliptic Partial Differential Equations (PDEs) via symmetric kernel collocation. We discuss the importance of the choice of the collocation points, in particular by using greedy kernel methods. We introduce a scale of PDE-greedy selection criteria that generalizes existing techniques, such as the PDE-P -greedy and the PDE-f -greedy rules for collocation point selection. For these greedy selection criteria we provide bounds on the approximation error in terms of the number of greedily selected points and analyze the corresponding convergence rates. This is achieved by a novel analysis of Kolmogorov widths of special sets of BVP point-evaluation functionals. Especially, we prove that target-data dependent algorithms that make use of the right hand side functions of the BVP exhibit faster convergence rates than the target-data independent PDE-P -greedy. The convergence rate of the PDE-f -greedy possesses a dimension independent rate, which makes it amenable to mitigate the curse of dimensionality. The advantages of these greedy algorithms are highlighted by numerical examples.

Citations (1)

Summary

We haven't generated a summary for this paper yet.