Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cascades of Global Bifurcations and Chaos near a Homoclinic Flip Bifurcation: A Case Study (2207.13854v1)

Published 28 Jul 2022 in math.DS and nlin.CD

Abstract: We study a homoclinic flip bifurcation of case~\textbf{C}, where a homoclinic orbit to a saddle equilibrium with real eigenvalues changes from being orientable to nonorientable. This bifurcation is of codimension two, and it is the lowest codimension for a homoclinic bifurcation of a real saddle to generate chaotic behavior in the form of (suspended) Smale horseshoes and strange attractors. We present a detailed numerical case study of how global stable and unstable manifolds of the saddle equilibrium and of bifurcating periodic orbits interact close to such bifurcation. This is a step forward in understanding the generic cases of homoclinic flip bifurcations, which started with the study of the simpler cases \textbf{A} and \textbf{B}. In a three-dimensional vector field due to Sandstede, we compute relevant bifurcation curves in the two-parameter bifurcation diagram near the central codimension-two bifurcation in unprecedented detail. We present representative images of invariant manifolds, computed with a boundary value problem setup, both in phase space and as intersection sets with a suitable sphere. In this way, we are able to identify infinitely many cascades of homoclinic bifurcations that accumulate on specific codimension-one heteroclinic bifurcations between an equilibrium and various saddle periodic orbits. Our computations confirm what is known from theory but also show the existence of bifurcation phenomena that were not considered before. Specifically, we identify the boundaries of the Smale--horseshoe region in the parameter plane, one of which creates a strange attractor that resembles the R\"{o}ssler attractor. The computation of a winding number reveals a complicated overall bifurcation structure in the wider parameter plane that involves infinitely many further homoclinic flip bifurcations associated with so-called homoclinic bubbles.

Summary

We haven't generated a summary for this paper yet.