Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decentralized Computation Offloading With Cooperative UAVs: Multi-Agent Deep Reinforcement Learning Perspective (2207.13832v1)

Published 27 Jul 2022 in cs.IT and math.IT

Abstract: Limited computing resources of internet-of-things (IoT) nodes incur prohibitive latency in processing input data. This triggers new research opportunities toward task offloading systems where edge servers handle intensive computations of IoT devices. Deploying the computing servers at existing base stations may not be sufficient to support IoT nodes operating in a harsh environment. This requests mobile edge servers to be mounted on unmanned aerial vehicles (UAVs) that provide on-demand mobile edge computing (MEC) services. Time-varying offloading demands and mobility of UAVs need a joint design of the optimization variables for all time instances. Therefore, an online decision mechanism is essential for UAV-aided MEC networks. This article presents an overview of recent deep reinforcement learning (DRL) approaches where decisions about UAVs and IoT nodes are taken in an online manner. Specifically, joint optimization over task offloading, resource allocation, and UAV mobility is addressed from the DRL perspective. For the decentralized implementation, a multi-agent DRL method is proposed where multiple intelligent UAVs cooperatively determine their computations and communication policies without central coordination. Numerical results demonstrate that the proposed decentralized learning strategy is superior to existing DRL solutions. The proposed framework sheds light on the viability of the decentralized DRL techniques in designing self-organizing IoT networks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Sangwon Hwang (10 papers)
  2. Hoon Lee (31 papers)
  3. Juseong Park (5 papers)
  4. Inkyu Lee (34 papers)
Citations (19)

Summary

We haven't generated a summary for this paper yet.