Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Satisfiability Bounds for $ω$-Regular Properties in Bounded-Parameter Markov Decision Processes (2207.13660v1)

Published 27 Jul 2022 in cs.LO, cs.SY, and eess.SY

Abstract: We consider the problem of computing minimum and maximum probabilities of satisfying an $\omega$-regular property in a bounded-parameter Markov decision process (BMDP). BMDP arise from Markov decision processes (MDP) by allowing for uncertainty on the transition probabilities in the form of intervals where the actual probabilities are unknown. $\omega$-regular languages form a large class of properties, expressible as, e.g., Rabin or parity automata, encompassing rich specifications such as linear temporal logic. In a BMDP the probability to satisfy the property depends on the unknown transitions probabilities as well as on the policy. In this paper, we compute the extreme values. This solves the problem specifically suggested by Dutreix and Coogan in CDC 2018, extending their results on interval Markov chains with no adversary. The main idea is to reinterpret their work as analysis of interval MDP and accordingly the BMDP problem as analysis of an $\omega$-regular stochastic game, where a solution is provided. This method extends smoothly further to bounded-parameter stochastic games.

Citations (8)

Summary

We haven't generated a summary for this paper yet.