Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

QFT-based Homogenization (2207.12949v1)

Published 26 Jul 2022 in math.NA and cs.NA

Abstract: Efficient numerical characterization is a key problem in composite material analysis. To follow accuracy improvement in image tomography, memory efficient methods of numerical characterization have been developed. Among them, an FFT based solver has been proposed by Moulinec and Suquet (1994,1998) bringing down numerical characterization complexity to the FFT complexity. Nevertheless, recent development of tomography sensors made memory requirement and calculation time reached another level. To avoid this bottleneck, the new leaps in the field of Quantum Computing have been used. This paper will present the application of the Quantum Fourier Transform (QFT) to replace the Fast Fourier Transform (FFT) in Moulinec and Suquet algorithm. It will mainly focused on how to read out Fourier coefficients stored in a quantum state. First, a reworked Hadamard test algorithm applied with Most likelihood amplitude estimation (MLQAE) is used to determine the quantum coefficients. Second, an improvement avoiding Hadamard test is presented in case of Material characterization on mirrored domain. Finally, this last algorithm is applied to Material homogenization to determine effective stiffness of basic geometries.

Citations (2)

Summary

We haven't generated a summary for this paper yet.