Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Learning of Accurate Surrogates for Simulations of Complex Systems (2207.12855v3)

Published 11 Jul 2022 in cs.LG, nucl-th, physics.comp-ph, physics.data-an, and physics.plasm-ph

Abstract: Machine learning methods are increasingly used to build computationally inexpensive surrogates for complex physical models. The predictive capability of these surrogates suffers when data are noisy, sparse, or time-dependent. As we are interested in finding a surrogate that provides valid predictions of any potential future model evaluations, we introduce an online learning method empowered by optimizer-driven sampling. The method has two advantages over current approaches. First, it ensures that all turning points on the model response surface are included in the training data. Second, after any new model evaluations, surrogates are tested and "retrained" (updated) if the "score" drops below a validity threshold. Tests on benchmark functions reveal that optimizer-directed sampling generally outperforms traditional sampling methods in terms of accuracy around local extrema, even when the scoring metric favors overall accuracy. We apply our method to simulations of nuclear matter to demonstrate that highly accurate surrogates for the nuclear equation of state can be reliably auto-generated from expensive calculations using a few model evaluations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. Wigley, P. et al. Fast machine-learning online optimization of ultra-cold-atom experiments. \JournalTitleScientific Reports 6 (2016).
  2. Adaptive method for electron bunch profile prediction. \JournalTitlePhysical Review Accelerators and Beams 18 (2015).
  3. Noack, M. et al. A kriging-based approach to autonomous experimentation with applications to x-ray scattering. \JournalTitleScientific Reports 9 (2019).
  4. Bridging the gaps at the physics-chemistry-biology interface. \JournalTitlePhilosophical Transactions of the Royal Society of London Series A 374, 20160335 (2016).
  5. Hu, S. X. et al. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications. \JournalTitlePhys. Rev. E 89, 043105, DOI: 10.1103/PhysRevE.89.043105 (2014).
  6. Multiscale molecular dynamics model for heterogeneous charged systems. \JournalTitlePhys. Rev. X 8, 021044 (2018).
  7. Path-integral monte carlo simulation of the warm dense homogeneous electron gas. \JournalTitlePhys. Rev. Lett. 110, 146405 (2013).
  8. Recent advances and applications of machine learning in solid-state materials science. \JournalTitlenpj Computational Materials 5 (2019).
  9. Materials discovery and design using machine learning. \JournalTitleJournal of Materiomics 3 (2017).
  10. Lubbers, N. et al. Modeling and scale-bridging using machine learning: nanoconfinement effects in porous media. \JournalTitleScientific Reports 10, 13312 (2020).
  11. Diaw, A. et al. Multiscale simulation of plasma flows using active learning. \JournalTitlePhys. Rev. E 102, 023310 (2020).
  12. Roehm, D. et al. Distributed Database Kriging for Adaptive Sampling (D2 KAS). \JournalTitleComputer Physics Communications 192, 138–147 (2015).
  13. Comparison of radial basis function approximation techniques. \JournalTitleCOMPEL-The international journal for computation and mathematics in electrical and electronic engineering 22, 616–629 (2003).
  14. Using radial basis function networks for function approximation and classification. \JournalTitleISRN Applied Mathematics 2012 (2012).
  15. Universal approximation using radial-basis-function networks. \JournalTitleNeural computation 3, 246–257 (1991).
  16. mystic: highly-constrained non-convex optimization and UQ (2009). http://pypi.python.org/pypi/mystic.
  17. Building a framework for predictive science. In Proceedings of the 10th Python in Science Conference, 67–78 (2011). http://arxiv.org/pdf/1202.1056.
  18. Rastrigin, L. A. Systems of External Control (Mir Publishers, Moscow, 1974). (in Russian).
  19. Rosenbrock, H. An automatic method for finding the greatest or least value of a function. \JournalTitleThe Computer Journal 3, 175–184 (1960).
  20. The global optimization problem: An introduction. In Towards Global Optimisation 2, 1–15 (North-Holland Publishing Company, Amsterdam, 1978).
  21. Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs (Springer-Verlag, Berlin, Heidelberg, New York, 1992).
  22. Easom, E. A Survey of Global Optimization Techniques (U. of Louisville, Louisville, KY, 1990). M. Eng. Thesis.
  23. Nuclear and neutron-star matter from local chiral interactions. \JournalTitlePhys. Rev. Research 2, 022033, DOI: 10.1103/PhysRevResearch.2.022033 (2020).
  24. Evidence for quark-matter cores in massive neutron stars. \JournalTitleNature Physics DOI: 10.1038/s41567-020-0914-9 (2020).
  25. Baym, G. et al. From hadrons to quarks in neutron stars: a review. \JournalTitleReports on Progress in Physics 81, 056902, DOI: 10.1088/1361-6633/aaae14 (2018).
  26. Nonmonotonic energy dependence of net-proton number fluctuations. \JournalTitlePhys. Rev. Lett. 126, 092301, DOI: 10.1103/PhysRevLett.126.092301 (2021).
  27. Heavy ion collisions: The big picture and the big questions. \JournalTitleAnnual Review of Nuclear and Particle Science 68, 339–376, DOI: 10.1146/annurev-nucl-101917-020852 (2018). https://doi.org/10.1146/annurev-nucl-101917-020852.
  28. Properties of hot and dense matter from relativistic heavy ion collisions. \JournalTitlePhysics Reports 621, 76–126, DOI: https://doi.org/10.1016/j.physrep.2015.12.003 (2016). Memorial Volume in Honor of Gerald E. Brown.
  29. Raaijmakers, G. et al. Constraints on the dense matter equation of state and neutron star properties from nicer’s mass–radius estimate of psr j0740+6620 and multimessenger observations. \JournalTitleThe Astrophysical Journal Letters 918, L29, DOI: 10.3847/2041-8213/ac089a (2021).
  30. Capano, C. D. et al. Stringent constraints on neutron-star radii from multimessenger observations and nuclear theory. \JournalTitleNature Astronomy 4, 625–632, DOI: 10.1038/s41550-020-1014-6 (2020). 1908.10352.
  31. Dietrich, T. et al. Multimessenger constraints on the neutron-star equation of state and the Hubble constant. \JournalTitleScience 370, 1450–1453, DOI: 10.1126/science.abb4317 (2020). 2002.11355.
  32. A nicer view of psr j0030+0451: Millisecond pulsar parameter estimation. \JournalTitleThe Astrophysical Journal 887, L21, DOI: 10.3847/2041-8213/ab481c (2019).
  33. Psr j0030+0451 mass and radius from nicer data and implications for the properties of neutron star matter. \JournalTitleThe Astrophysical Journal 887, L24, DOI: 10.3847/2041-8213/ab50c5 (2019).
  34. Dexheimer, V. Tabulated neutron star equations of state modelled within the chiral mean field model. \JournalTitlePublications of the Astronomical Society of Australia 34, DOI: 10.1017/pasa.2017.61 (2017).
  35. Gw170817: Observation of gravitational waves from a binary neutron star inspiral. \JournalTitlePhysical Review Letters 119, DOI: 10.1103/physrevlett.119.161101 (2017).
  36. CompOSE CompStar online supernova equations of state harmonising the concert of nuclear physics and astrophysics compose.obspm.fr. \JournalTitlePhys. Part. Nucl. 46, 633–664, DOI: 10.1134/S1063779615040061 (2015).
  37. Akmal-Pandharipande-Ravenhall equation of state for simulations of supernovae, neutron stars, and binary mergers. \JournalTitlePhys. Rev. C 100, 025803, DOI: 10.1103/PhysRevC.100.025803 (2019).
  38. Finite-temperature Extension for Cold Neutron Star Equations of State. \JournalTitleAstrophys. Journal 875, 12, DOI: 10.3847/1538-4357/ab08ea (2019).
  39. Glendenning, N. K. Compact Stars: Nuclear Physics, Particle Physics and General Relativity. Astronomy and Astrophysics Library (Springer New York, 1997).
  40. Conditions for phase equilibrium in supernovae, protoneutron, and neutron stars. \JournalTitlePhys. Rev. D 80, 125014, DOI: 10.1103/PhysRevD.80.125014 (2009).
  41. Fischer, T. et al. Core-collapse supernova explosions triggered by a quark-hadron phase transition during the early post-bounce phase. \JournalTitleThe Astrophys. Journal Supplement Series 194, 39, DOI: 10.1088/0067-0049/194/2/39 (2011).
  42. Quarkyonic matter and neutron stars. \JournalTitlePhys. Rev. Lett. 122, 122701, DOI: 10.1103/PhysRevLett.122.122701 (2019).
  43. New extended model of hadrons. \JournalTitlePhys. Rev. D 9, 3471–3495, DOI: 10.1103/PhysRevD.9.3471 (1974).
  44. Quark phases in neutron stars and a third family of compact stars as signature for phase transitions1. \JournalTitleNuclear Physics A 677, 463–490, DOI: 10.1016/S0375-9474(00)00305-5 (2000).
  45. Rocha, H. On the selection of the most adequate radial basis function. \JournalTitleApplied Mathematical Modelling 33, 1573 – 1583 (2009).
  46. Learning internal representations by error propagation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 318–362 (MIT press Cambridge, MA, 1986).
  47. Adaptive greedy techniques for approximate solution of large RBF systems. \JournalTitleNumerical Algorithms 24, 239–254 (2000).
  48. Solar radiation estimation using artificial neural networks. \JournalTitleApplied Energy 71, 307 – 319 (2002).
  49. Directed sampling datasets, DOI: https://zenodo.org/records/10908462 (2024).
  50. Efficient learning of accurate surrogates for simulations of complex systems, DOI: https://codeocean.com/capsule/9146443/tree/v1 (2024).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com