Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tuning Stochastic Gradient Algorithms for Statistical Inference via Large-Sample Asymptotics (2207.12395v3)

Published 25 Jul 2022 in stat.CO, cs.LG, stat.ME, and stat.ML

Abstract: The tuning of stochastic gradient algorithms (SGAs) for optimization and sampling is often based on heuristics and trial-and-error rather than generalizable theory. We address this theory--practice gap by characterizing the large-sample statistical asymptotics of SGAs via a joint step-size--sample-size scaling limit. We show that iterate averaging with a large fixed step size is robust to the choice of tuning parameters and asymptotically has covariance proportional to that of the MLE sampling distribution. We also prove a Bernstein--von Mises-like theorem to guide tuning, including for generalized posteriors that are robust to model misspecification. Numerical experiments validate our results and recommendations in realistic finite-sample regimes. Our work lays the foundation for a systematic analysis of other stochastic gradient Markov chain Monte Carlo algorithms for a wide range of models.

Citations (1)

Summary

We haven't generated a summary for this paper yet.