Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SegPGD: An Effective and Efficient Adversarial Attack for Evaluating and Boosting Segmentation Robustness (2207.12391v3)

Published 25 Jul 2022 in cs.CV and eess.IV

Abstract: Deep neural network-based image classifications are vulnerable to adversarial perturbations. The image classifications can be easily fooled by adding artificial small and imperceptible perturbations to input images. As one of the most effective defense strategies, adversarial training was proposed to address the vulnerability of classification models, where the adversarial examples are created and injected into training data during training. The attack and defense of classification models have been intensively studied in past years. Semantic segmentation, as an extension of classifications, has also received great attention recently. Recent work shows a large number of attack iterations are required to create effective adversarial examples to fool segmentation models. The observation makes both robustness evaluation and adversarial training on segmentation models challenging. In this work, we propose an effective and efficient segmentation attack method, dubbed SegPGD. Besides, we provide a convergence analysis to show the proposed SegPGD can create more effective adversarial examples than PGD under the same number of attack iterations. Furthermore, we propose to apply our SegPGD as the underlying attack method for segmentation adversarial training. Since SegPGD can create more effective adversarial examples, the adversarial training with our SegPGD can boost the robustness of segmentation models. Our proposals are also verified with experiments on popular Segmentation model architectures and standard segmentation datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jindong Gu (101 papers)
  2. Hengshuang Zhao (118 papers)
  3. Volker Tresp (158 papers)
  4. Philip Torr (172 papers)
Citations (63)

Summary

We haven't generated a summary for this paper yet.