Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Encryption Method of ConvMixer Models without Performance Degradation (2207.11939v1)

Published 25 Jul 2022 in cs.CR and cs.CV

Abstract: In this paper, we propose an encryption method for ConvMixer models with a secret key. Encryption methods for DNN models have been studied to achieve adversarial defense, model protection and privacy-preserving image classification. However, the use of conventional encryption methods degrades the performance of models compared with that of plain models. Accordingly, we propose a novel method for encrypting ConvMixer models. The method is carried out on the basis of an embedding architecture that ConvMixer has, and models encrypted with the method can have the same performance as models trained with plain images only when using test images encrypted with a secret key. In addition, the proposed method does not require any specially prepared data for model training or network modification. In an experiment, the effectiveness of the proposed method is evaluated in terms of classification accuracy and model protection in an image classification task on the CIFAR10 dataset.

Citations (1)

Summary

We haven't generated a summary for this paper yet.