Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GA2MIF: Graph and Attention Based Two-Stage Multi-Source Information Fusion for Conversational Emotion Detection (2207.11900v6)

Published 25 Jul 2022 in cs.MM

Abstract: Multimodal Emotion Recognition in Conversation (ERC) plays an influential role in the field of human-computer interaction and conversational robotics since it can motivate machines to provide empathetic services. Multimodal data modeling is an up-and-coming research area in recent years, which is inspired by human capability to integrate multiple senses. Several graph-based approaches claim to capture interactive information between modalities, but the heterogeneity of multimodal data makes these methods prohibit optimal solutions. In this work, we introduce a multimodal fusion approach named Graph and Attention based Two-stage Multi-source Information Fusion (GA2MIF) for emotion detection in conversation. Our proposed method circumvents the problem of taking heterogeneous graph as input to the model while eliminating complex redundant connections in the construction of graph. GA2MIF focuses on contextual modeling and cross-modal modeling through leveraging Multi-head Directed Graph ATtention networks (MDGATs) and Multi-head Pairwise Cross-modal ATtention networks (MPCATs), respectively. Extensive experiments on two public datasets (i.e., IEMOCAP and MELD) demonstrate that the proposed GA2MIF has the capacity to validly capture intra-modal long-range contextual information and inter-modal complementary information, as well as outperforms the prevalent State-Of-The-Art (SOTA) models by a remarkable margin.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jiang Li (48 papers)
  2. Xiaoping Wang (56 papers)
  3. Guoqing Lv (4 papers)
  4. Zhigang Zeng (28 papers)
Citations (25)