Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using a Bayesian approach to reconstruct graph statistics after edge sampling (2207.11793v3)

Published 24 Jul 2022 in cs.SI

Abstract: Often, due to prohibitively large size or to limits to data collecting APIs, it is not possible to work with a complete network dataset and sampling is required. A type of sampling which is consistent with Twitter API restrictions is uniform edge sampling. In this paper, we propose a methodology for the recovery of two fundamental network properties from an edge-sampled network: the degree distribution and the triangle count (we estimate the totals for the network and the counts associated with each edge). We use a Bayesian approach and show a range of methods for constructing a prior which does not require assumptions about the original network. Our approach is tested on two synthetic and three real datasets with diverse sizes, degree distributions, degree-degree correlations and triangle count distributions.

Summary

We haven't generated a summary for this paper yet.