Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tighter Bound Estimation for Efficient Biquadratic Optimization Over Unit Spheres (2207.11734v5)

Published 24 Jul 2022 in math.NA, cs.NA, and math.OC

Abstract: Bi-quadratic programming over unit spheres is a fundamental problem in quantum mechanics introduced by pioneer work of Einstein, Schr\"odinger, and others. It has been shown to be NP-hard; so it must be solve by efficient heuristic algorithms such as the block improvement method (BIM). This paper focuses on the maximization of bi-quadratic forms, which leads to a rank-one approximation problem that is equivalent to computing the M-spectral radius and its corresponding eigenvectors. Specifically, we provide a tight upper bound of the M-spectral radius for nonnegative fourth-order partially symmetric (PS) tensors, which can be considered as an approximation of the M-spectral radius. Furthermore, we showed that the proposed upper bound can be obtained more efficiently, if the nonnegative fourth-order PS-tensors is a member of certain monoid semigroups. Furthermore, as an extension of the proposed upper bound, we derive the exact solutions of the M-spectral radius and its corresponding M-eigenvectors for certain classes of fourth-order PS-tensors. Lastly, as an application of the proposed bound, we obtain a practically testable sufficient condition for nonsingular elasticity M-tensors with strong ellipticity condition. We conduct several numerical experiments to demonstrate the utility of the proposed results. The results show that: (a) our proposed method can attain a tight upper bound of the M-spectral radius with little computational burden, and (b) such tight and efficient upper bounds greatly enhance the convergence speed of the BIM-algorithm, allowing it to be applicable for large-scale problems in applications.

Summary

We haven't generated a summary for this paper yet.