Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Making the Most of Sporadic Feedback: Low-Complexity Application-Layer Coding for Data Recovery in the Internet of Things (2207.11566v1)

Published 23 Jul 2022 in cs.IT, cs.NI, and math.IT

Abstract: We propose application-layer coding schemes to recover lost data in delay-sensitive uplink (sensor-to-gateway) communications in the Internet of Things. Built on an approach that combines retransmissions and forward erasure correction, the proposed schemes' salient features include low computational complexity and the ability to exploit sporadic receiver feedback for efficient data recovery. Reduced complexity is achieved by keeping the number of coded transmissions as low as possible and by devising a mechanism to compute the optimal degree of a coded packet in O(1). Our major contributions are: (a) An enhancement to an existing scheme called windowed coding, whose complexity is greatly reduced and data recovery performance is improved by our proposed approach. (b) A technique that combines elements of windowed coding with a new feedback structure to further reduce the coding complexity and improve data recovery. (c) A coded forwarding scheme in which a relay node provides further resilience against packet loss by overhearing source-to-destination communications and making forwarding decisions based on overheard information.

Citations (1)

Summary

We haven't generated a summary for this paper yet.