Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Arbitrary Style Transfer with Structure Enhancement by Combining the Global and Local Loss (2207.11438v1)

Published 23 Jul 2022 in cs.CV and eess.IV

Abstract: Arbitrary style transfer generates an artistic image which combines the structure of a content image and the artistic style of the artwork by using only one trained network. The image representation used in this method contains content structure representation and the style patterns representation, which is usually the features representation of high-level in the pre-trained classification networks. However, the traditional classification networks were designed for classification which usually focus on high-level features and ignore other features. As the result, the stylized images distribute style elements evenly throughout the image and make the overall image structure unrecognizable. To solve this problem, we introduce a novel arbitrary style transfer method with structure enhancement by combining the global and local loss. The local structure details are represented by Lapstyle and the global structure is controlled by the image depth. Experimental results demonstrate that our method can generate higher-quality images with impressive visual effects on several common datasets, comparing with other state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.