Generalized Hilbert Operator Acting on Weighted Bergman Spaces and on Dirichlet Spaces (2207.11176v1)
Abstract: Let $\mu$ be a positive Borel measure on the interval [0,1). For $\beta > 0$, The generalized Hankel matrix $\mathcal{H}{\mu,\beta}= (\mu{n,k,\beta}){n,k\geq0}$ with entries $\mu{n,k,\beta}= \int_{[0.1)}\frac{\Gamma(n+\beta)}{n!\Gamma(\beta)} t{n+k}d\mu(t)$, induces formally the operator $$\mathcal{H}{\mu,\beta}(f)(z)=\sum{n=0}\infty \left(\sum_{k=0}\infty \mu_{n,k,\beta}a_k\right)zn$$ on the space of all analytic function $f(z)=\sum_{k=0}^ \infty a_k zn$ in the unit disc $\mathbb{D}$. In this paper, we characterize those positive Borel measures on $[0,1)$ such that $\mathcal{H}{\mu,\beta}(f)(z)= \int{[0,1)} \frac{f(t)}{{(1-tz)\beta}} d\mu(t)$ for all in weighted Bergman Spaces $A_{\alpha}p(0<p<\infty,\; \alpha>-1)$, and among them we describe those for which $\mathcal{H}_{\mu,\beta}(\beta>0)$ is a bounded(resp.,compact) operator on weighted Bergman spaces and Dirichlet spaces.