Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new class of negabent functions (2207.11015v1)

Published 22 Jul 2022 in cs.DM and math.CO

Abstract: Negabent functions were introduced as a generalization of bent functions, which have applications in coding theory and cryptography. In this paper, we have extended the notion of negabent functions to the functions defined from $\mathbb{Z}qn$ to $\mathbb{Z}{2q}$ ($2q$-negabent), where $q \geq 2$ is a positive integer and $\mathbb{Z}_q$ is the ring of integers modulo $q$. For this, a new unitary transform (the nega-Hadamard transform) is introduced in the current set up, and some of its properties are discussed. Some results related to $2q$-negabent functions are presented. We present two constructions of $2q$-negabent functions. In the first construction, $2q$-negabent functions on $n$ variables are constructed when $q$ is an even positive integer. In the second construction, $2q$-negabent functions on two variables are constructed for arbitrary positive integer $q \ge 2$. Some examples of $2q$-negabent functions for different values of $q$ and $n$ are also presented.

Summary

We haven't generated a summary for this paper yet.