Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradual Drift Detection in Process Models Using Conformance Metrics (2207.11007v2)

Published 22 Jul 2022 in cs.AI

Abstract: Changes, planned or unexpected, are common during the execution of real-life processes. Detecting these changes is a must for optimizing the performance of organizations running such processes. Most of the algorithms present in the state-of-the-art focus on the detection of sudden changes, leaving aside other types of changes. In this paper, we will focus on the automatic detection of gradual drifts, a special type of change, in which the cases of two models overlap during a period of time. The proposed algorithm relies on conformance checking metrics to carry out the automatic detection of the changes, performing also a fully automatic classification of these changes into sudden or gradual. The approach has been validated with a synthetic dataset consisting of 120 logs with different distributions of changes, getting better results in terms of detection and classification accuracy, delay and change region overlapping than the main state-of-the-art algorithms.

Summary

We haven't generated a summary for this paper yet.