Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Respecting Time Series Properties Makes Deep Time Series Forecasting Perfect (2207.10941v1)

Published 22 Jul 2022 in cs.LG and cs.AI

Abstract: How to handle time features shall be the core question of any time series forecasting model. Ironically, it is often ignored or misunderstood by deep-learning based models, even those baselines which are state-of-the-art. This behavior makes their inefficient, untenable and unstable. In this paper, we rigorously analyze three prevalent but deficient/unfounded deep time series forecasting mechanisms or methods from the view of time series properties, including normalization methods, multivariate forecasting and input sequence length. Corresponding corollaries and solutions are given on both empirical and theoretical basis. We thereby propose a novel time series forecasting network, i.e. RTNet, on the basis of aforementioned analysis. It is general enough to be combined with both supervised and self-supervised forecasting format. Thanks to the core idea of respecting time series properties, no matter in which forecasting format, RTNet shows obviously superior forecasting performances compared with dozens of other SOTA time series forecasting baselines in three real-world benchmark datasets. By and large, it even occupies less time complexity and memory usage while acquiring better forecasting accuracy. The source code is available at https://github.com/OrigamiSL/RTNet.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Li Shen (363 papers)
  2. Yuning Wei (4 papers)
  3. Yangzhu Wang (5 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.