Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Transferable Recommender Approach for Selecting the Best Density Functional Approximations in Chemical Discovery (2207.10747v1)

Published 21 Jul 2022 in physics.chem-ph, cond-mat.mtrl-sci, and cs.LG

Abstract: Approximate density functional theory (DFT) has become indispensable owing to its cost-accuracy trade-off in comparison to more computationally demanding but accurate correlated wavefunction theory. To date, however, no single density functional approximation (DFA) with universal accuracy has been identified, leading to uncertainty in the quality of data generated from DFT. With electron density fitting and transfer learning, we build a DFA recommender that selects the DFA with the lowest expected error with respect to gold standard but cost-prohibitive coupled cluster theory in a system-specific manner. We demonstrate this recommender approach on vertical spin-splitting energy evaluation for challenging transition metal complexes. Our recommender predicts top-performing DFAs and yields excellent accuracy (ca. 2 kcal/mol) for chemical discovery, outperforming both individual transfer learning models and the single best functional in a set of 48 DFAs. We demonstrate the transferability of the DFA recommender to experimentally synthesized compounds with distinct chemistry.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Chenru Duan (28 papers)
  2. Aditya Nandy (16 papers)
  3. Ralf Meyer (54 papers)
  4. Naveen Arunachalam (3 papers)
  5. Heather J. Kulik (34 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.